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Abstract Metal surface evolution is described by a nonlinear fourth-order partial differential equation for
curvature-driven flow. The standard boundary conditions for grain-boundary grooving, at a grain–grain–fluid triple
intersection, involve a prescribed slope at the groove axis. The well-known similarity reduction is no longer valid
when the dihedral angle and surface diffusivity depend on time due to variation of the surface temperature. We
adapt a nonlinear fourth-order model that can be discerned from symmetry analysis to be integrable, equivalent to
the fourth-order linear diffusion equation. The connection between classical symmetries and separation of variables
allows us to develop the correction to the self-similar approximation as a power series in a time-like variable.

Keywords Free boundary · Generalized hypergeometric functions · Integrable model · Surface diffusion ·
Symmetry reductions

1 Introduction

For some metals such as gold, surface evolution occurs predominantly by surface diffusion, as described by the
fourth-order Mullins equation [1]. In Cartesian coordinates,

yt = −B ∂x

{(
1 + y2

x

)−1/2
∂x

yxx(
1 + y2

x

)3/2

}
, (1.1)

where B is constant. This is a conservation equation, of the form yt + Jx = 0, where J is the surface-diffusive flux.
By differentiating each side with respect to x , we obtain an evolution equation in the more standard nonlinear form

θt = − ∂2
x {D(θ)∂x [E(θ)θx ]} , (1.2)

where θ = yx = arctan(φ). For an anisotropic material, the coefficient functions D(θ) and E(θ) may be general
when surface tension and diffusivity depend on the angle between the material surface and the crystal planes
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88 P. Broadbridge, J. M. Goard

(e.g. [2,3]). For simplicity, we consider a grain boundary that is symmetric about the axis x = 0, where the groove
root establishes an equilibrium dihedral angle π − 2φ, determined by a balance between surface tension and grain
boundary tension, γb = 2γs sin(φ). Hence it is usual to impose an ideal boundary condition

yx (0, t) = m(constant). (1.3)

The standard boundary-value problem for a symmetric groove is completed by specifying flat initial conditions,
zero-flux boundary condition, and a steady horizontal surface far from the groove:

y(x, 0) = 0, x > 0 (1.4)

J (0, t) = 0, t ≥ 0 (1.5)

y(x, t) → 0, x → ∞, t ≥ 0 (1.6)

yx (x, t) → 0, x → ∞, t ≥ 0. (1.7)

Exact unsteady solutions to (1.1) are notoriously hard to find [4]. Mullins [1] solved the grain-boundary grooving
problem in the small-slope approximation that replaces (1.1) by a linear equation

yt = −Byxxxx .

In the mid 1990s, the exact similarity solution for the standard nonlinear boundary-value problem for grain-
boundary evolution was constructed for an integrable model that agrees well with (1.1) for all positive values of the
slope [5,6].

In reality, a polycrystalline metal first forms when a liquid cools. At that time, the surface temperature is approx-
imately uniform in space but it may be rapidly decreasing in time due to contact with air. The surface diffusivity,
the solid–fluid interfacial tension and the grain-boundary tension depend on temperature. Therefore, Eq. 1.1 should
be extended to allow for transport coefficients to depend explicitly on time, as well as on slope. Due to temperature
effects, not only the governing equation but also the boundary data must depend explicitly on time. The interfacial
tension and the grain-boundary tension do not remain in fixed proportion as they vary with temperature. The dihedral
angle is temperature-dependent and the prescribed groove slope yx (0, t) = m(t)must vary with time. The variation
with time may in principle be controlled at will by either cooling or heating. Camel et al. [7] review three sets of
experimental data, consistently showing that the dihedral angle of an Al-Sn system increases from zero to 70◦ as
temperature varies from 880 to 500 K. At various temperatures and pressures, the dihedral angle of quartz grain
boundaries in water is either decreasing or increasing [8].

In Sect. 2, we derive an integrable surface diffusion model with transport coefficients that depend on time in
a general way, as well as depending on slope in a manner that approximates standard curvature-driven flow. The
standard nonlinear boundary-value problem for grooving transforms to a linear fourth-order diffusion equation with
time-dependent linear boundary conditions at a free boundary. The location of the free boundary is equivalent to
finding the depth of the groove as a function of time.

When the dihedral angle is constant, it is well known that there is a direct similarity reduction due to scaling
invariance. However, a time-dependent groove slope yx (0, t) is incompatible with such a reduction. Fortunately,
for linear equations there is a well known connection between a Lie point symmetry (a one-parameter Lie group
of transformations on the original set of variables that leaves the equation invariant) and suitable coordinates for
separation of variables [9]. In terms of canonical coordinates for the symmetry, one may construct a more general
power series in time, where each term is a separated solution, the simplest being the similarity solution. We then
investigate whether such a power series is sufficient to satisfy the boundary conditions. After transforming the inte-
grable governing equation to a linear equation, this approach is applied to the time-dependent grooving problem.
When the groove slope varies in time from a non-zero initial value, the leading term in the series is indeed the
similarity solution that is already known. Each correction term in the power series may be constructed explicitly
in terms of generalized hypergeometric functions. In Sect. 4, we proceed to construct the series approximation for
y(x, t).
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Temperature-dependent surface diffusion 89

2 An integrable nonlinear time-dependent model for surface diffusion

Areal flux for material transport on the surface [dimensions L2T−1] is given by

J = −ν�v, (2.1)

where ν is the areal density of particles on the surface [L−2], � is mean particle volume and v is the drift velocity.
v may be regarded as a terminal velocity that gives a balance between mechanical resistance and driving force.
Ideally, from the Nernst–Einstein relation of kinetic theory (e.g. [1]),

v = −Ds

kT

∂�

∂s
, (2.2)

where T is absolute temperature, � is the chemical potential per particle, k is Boltzmann’s constant and Ds is a
surface mobility parameter [L2T−1]. For anisotropic materials, Ds is a function of angle φ.

Now according to Herring [10], at the leading order in curvature κ ,

� = �
[
γs(φ)+ γ ′′

s (φ)
]
κ. (2.3)

As the simplest generalization to allow for temperature dependence, we assume that γs(φ) may be extended to a
separated product ξ(T )γs(φ), where ξ(T ) is a dimensionless temperature-dependent factor. Then the flux is

J = − Ds(φ)

kT
ν�2∂s

{
ξ(T )[γs(φ)+ γ ′′

s (φ)]κ
}
. (2.4)

Again for simplicity, we assume that surface temperature is uniform in space but varying in time. Then the equation
of mass conservation in normal and tangential coordinates is ∂t N + ∂s J = 0, where ∂t N is the rate of build-up
normal to the surface due to transported particles. In Cartesian coordinates,

yt = −γ0
ξ(T )

νkT
∂x {D(yx )∂x [E(yx )yxx ]}, (2.5)

where

E(θ) = γ−1
0 [γs(φ)+ γ ′′

s (φ)](1 + θ2)−3/2 [dimensionless], (2.6)

D(θ) = (1 + θ2)−1/2 Ds(φ)ν
2�2 [L4T−1], (2.7)

φ = arctan(yx ); θ = yx , (2.8)

and γ0 = γs(0), which is the surface tension on a horizontal flat surface at some reference temperature T0 where
ξ(T0) is defined to be one. Now we define a new time-like coordinate t̄ that also has the dimensions of time,

t̄ = γ0

νk

t∫
0

ξ(T (t1))

T (t1)
dt1. (2.9)

Use of this variable simplifies (2.5) to an autonomous equation

yt̄ = −∂x {D(yx )∂x [E(yx )yxx ]}. (2.10)

There is a time scale t̄s for significant variation of the groove slope m(t̄). The length scale for diffusion during this
time is �s = (Ds(0)ν2�2 t̄s)1/4. Defining dimensionless variables (x∗, y∗, t∗) = (x/�s, y/�s, t̄/ts), the relevant
boundary-value problem is

y∗
t∗ = −∂x∗

[
D∗(y∗

x∗)∂x∗
[
E(y∗

x∗)y∗
x∗x∗

]] ; (2.11)

(x∗, t∗) ∈ [0,∞)2

y∗(x∗, 0) = 0 (2.12)

y∗
x∗(0, t∗) = m(t∗) (2.13)

J ∗(0, t∗) = −D∗(y∗
x∗)∂x∗

[
E(y∗

x∗)y∗
x∗x∗

] |x∗=0 = 0 (2.14)

y(x∗, t∗) → 0, x∗ → ∞ (2.15)

y∗
x∗(x∗, t∗) → 0, x∗ → ∞, (2.16)
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where D∗(θ) = D(θ)/D(0).
Differentiating each side of (2.10) with respect to x∗, we have

θt∗ = −∂2
x∗{D∗(θ)∂x∗ [E(θ)θx∗ ]}. (2.17)

From (2.7), for an isotropic material, the nonlinear diffusivity D∗(θ) is simply a geometric factor

D∗(θ) = cos(φ) = f (θ) = 1/
√

1 + θ2, (2.18)

which originates from the Euclidean metric ds = (dx2 + dy2)1/2, so that dx = f (yx )ds. Similarly, from (2.4,2.6)
E(θ) is obtained from a geometric operator,

− κ/yxx = |d2r/ds2|/yxx (2.19)

= f (yx ){[ f ′(yx )]2 + [yx f ′(yx )+ f (yx )]2}1/2. (2.20)

In the isotropic surface diffusion equation (1.1), the small-slope approximation |yx | << 1 leads to the linear
equation

yt = −Byxxxx

that can be treated by standard transform methods. An alternative interpretation of the case with both D∗(θ) and
E(θ) constant, is that from (2.6, 2.7), (2.17) is the exact surface diffusion equation of an anisotropic material with

Ds(φ) = D0 sec(φ) (2.21)

γs = γ0 [A1 cos(φ)+ (1 − A1) sec(φ)+ A2 sin(φ)] , (2.22)

with D0, A1 and A2 constant. The appearance of the singularity in surface tension at φ = ±π/2 highlights the fact
that the linear fourth-order diffusion equation arises as a small-slope approximation, invalid when slopes are large.
Another class of models that is integrable [5], more useful when yx can take large positive values, is given by

D∗(θ) = β

β + θ
, E(θ) = E0

β3

(β + θ)3
, (2.23)

with E0 constant. For that case, Eq. 2.17 is the fourth-order member of a hierarchy of integrable evolution equations,
identifiable as the very special equations that have higher-order Lie–Bäcklund symmetries [11] or as those whose
potential symmetries contain a free solution of an equivalent linear equation [12] or as those equations that have a
nonlinear superposition principle [13]. In fact, Tritscher [14] showed that this integrable model is simply related to
the linear model by a rotation in the xy-plane.

If the anisotropic surface tension takes the form

γs = γ0

cos(φ0)

[
A1 cos(φ − φ0)+ (1 − A1) cos2(φ0) sec(φ − φ0)+ A2 sin(φ)

]
, (2.24)

then from (2.6), E(θ) takes the form (2.23) with

E0 = 2(1 − A1)
(1 + β2)

β2 , (2.25)

where β = cot(φ0). Whereas the linear model corresponds to artificial singularities in surface tension at φ = ±π/2,
in the integrable nonlinear model, these singularities are rotated to φ = φ0 ± π/2. If we intend to approximate an
isotropic material, then following (2.18), f (θ) is approximated by D∗(θ), and the geometric relation (2.20) equates
E0 to be

√
1 + β−2. This agrees with (2.25) when

A1 = 1 − β

2
√

1 + β2
(2.26)

and A2 is arbitrary. In practice, isotropy of surface tension is best approximated when A2 = 0. The integrable
model (2.23) has the advantage that it agrees with the behaviour of the isotropic model D(θ) = O(θ−1) and
E(θ) = O(θ−3) for large θ . The choice β = 2.026 minimizes the maximum difference of D∗(θ) from the isotropic
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Temperature-dependent surface diffusion 91

Fig. 1 Polar plot of model
surface tension versus
orientation of surface

model over the domain 0 ≤ θ < ∞ [5]. Figure 1 shows that the model surface tension is almost isotropic for the
wide range of surface orientations between −20 and 72◦. That range is likely to adequately describe the region
x > 0. The singularities near orientations of 116 and −64◦ are removed from the region of interest.

Using the model (2.23), the boundary-value problem (2.11)–(2.16) for slope θ(x∗, t∗) is:

θt∗ = −E0∂
2
x∗

[
β

β + θ
∂x∗

[(
β

β + θ

)3

θx∗

]]
, (x∗, t∗) ∈ [0,∞)2 (2.27)

θ(x∗, 0) = 0, (2.28)

θ(0, t∗) = m(t∗), (2.29)

x∗ = 0, ∂x∗

[(
β

β + θ(x∗, t∗)

)3

θx∗(x∗, t∗)
]

= 0, (2.30)

θ(x∗, t∗) → 0, x∗ → ∞, (2.31)

θx∗(x∗, t∗) → 0, x∗ → ∞. (2.32)

It is expected that the solution y∗(x∗, t∗) to (2.11–2.16) will have all derivatives rapidly approaching zero as x∗
approaches ∞. In that case, y∗(x∗, t∗) can be obtained by integrating the unique solution for θ(x∗, t∗). Now let

µ = β

β + θ
, (2.33)

z =
x∗∫

0

β + θ

β
dx∗ =

x∗∫
0

1

µ
dx∗, (2.34)

τ = E0t∗. (2.35)

This results in a linear equation

µτ = −µzzzz − 1

β
R(τ )µz, (2.36)

where

R(τ ) = −y∗
τ (0, τ ). (2.37)
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The initial and boundary conditions are

τ = 0, µ = 1, (2.38)

z = 0, µ = β

β + m(τ )
, µzz = 0, (2.39)

z → ∞, µ → 1, µz → 0. (2.40)

In addition, (2.11) and (2.37) imply a consistency relation

z = 0, µzzz = −R(τ )

β + m(τ )
(2.41)

that will be needed in order to determine the unknown function R(τ ).
In (2.36), the convective term can be set to 0 by a change of reference:

Z = z + 1

β
y∗(0, τ ), (2.42)

µτ = −µZ Z Z Z , (2.43)

τ = 0, µ = 1, (2.44)

Z = �(τ), µ = β

β + m(τ )
, (2.45)

Z = �(τ), µZ Z = 0, (2.46)

Z → ∞, µ → 1, (2.47)

Z → ∞, µZ → 0, (2.48)

Z = �(τ), µZ Z Z = β�̇(τ)

β + m(τ )
, (2.49)

where

�(τ) = 1

β
y∗(0, τ ). (2.50)

Solution of the free-boundary problem requires �(τ) as well as µ(Z , τ ).
In the next section, we use the fact that for a linear PDE with a Lie point symmetry, separation of variables is

possible in terms of canonical symmetry coordinates.

3 Separation of variables

Neglecting linear superposition, a Lie point symmetry of a linear PDE Qu(x, t) = 0, may be represented as a linear
first-order operator L, such that Lu = 0 is the invariant surface condition. The corresponding “vertical” extended
symmetry transformation (e.g [9,15]) is

µ̃(x, t, u, ux , ut ) = Lu = v(x, t)u − X (x, t)ux − T (x, t)ut . (3.1)

Following [9,16], one can choose a canonical coordinate system (y1, y2), where y2(x, t) is an invariant of the sym-
metry, Ly2 = 0, and L = ∂/∂y1 so that L(y1(x, t)) = 1. The symmetry theory of second-order linear equations [9]
readily extends to higher-order equations. An equation that is invariant under symmetry L always admits separation
of variables in the canonical coordinate system, u(y1, y2) = eky1 F(y2). The separation constant k may be any
spectral value of symmetry operator L , since the separated solution u = eky1 F(y2) satisfies Lu = ku.

The separated solutions of (2.43) from its simple scaling symmetry are of the form

τ k/4 F(Y ), (3.2)

with k arbitrary real and Y = y2 = Zτ−1/4.
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After replacing independent variables (Z , τ ) by canonical coordinates, the governing equation (2.43) is equiva-
lent to

τµτ = YµY − 4µY Y Y Y . (3.3)

The Y-dependent factor in the separated solutions satisfies the linear ordinary differential equation

4F ′′′′(Y )− Y F ′(Y ) = −k F, (3.4)

for which the general solution with free parameters C1, . . . ,C4, is expressed in terms of generalized hypergeometric
functions,

F(Y ) = C1 1 F3

([−k

4

]
,

[
1

4
,

1

2
,

3

4

]
,

Y 4

256

)
+ C2Y1 F3

([
1 − k

4

]
,

[
1

2
,

3

4
,

5

4

]
,

Y 4

256

)

+C3Y 2
1 F3

([
2 − k

4

]
,

[
3

4
,

5

4
,

3

2

]
,

Y 4

256

)
+ C4Y 3

1 F3

([
3 − k

4

]
,

[
5

4
,

3

2
,

7

4

]
,

Y 4

256

)
.

In the known similarity solution [5,6] with constant groove slope yx (0, τ ) = m, y(0, τ ) is proportional to τ 1/4. The
series method can accommodate a generalization with m(τ ) an analytic function of τ 1/4 specified from experimental
conditions,

Z = �(τ); µ = β

β + m(τ )
=

∞∑
i=0

εiτ
i/4. (3.5)

This includes the case of m varying more smoothly as an analytic function of time. However, to demonstrate the
capability of the method, later we produce numerical examples when m is modified by an O(τ 1/4) correction. Con-
ceivably, such less smooth adjustments to groove slope could model the addition of surfactant rather than control
of temperature. Then y∗(0, τ )τ−1/4 will be assumed to be a power series in τ 1/4:

x = 0 ⇐⇒ y∗(0, τ ) = βτ 1/4
∞∑

i=0

biτ
i/4

⇐⇒ Z = �(τ) = 1

β
y∗(0, τ )

⇐⇒ Y = �(τ)/τ 1/4 =
∞∑

i=0

biτ
i/4, (3.6)

with bi real constants and b0 < 0. In order for the solution to be consistent with the boundary conditions, we make
another reasonable assumption that the slope m(τ ) at the groove root and the solution µ(Z , τ ) can be formally
developed as analytic functions of τ 1/4. This means that the separation constant k is an arbitrary non-negative
integer, so that the solution to (3.3) can be developed as a formal power series

µ = µ0(Y )+
∞∑
j=0

τ j/4
[

K1 j 1 F3

([− j

4

]
,

[
1

4
,

1

2
,

3

4

]
,

Y 4

256

)
+ K2 j Y 1 F3

([
1

4
− j

4

]
,

[
1

2
,

3

4
,

5

4

]
,

Y 4

256

)

+K3 j Y
2

1 F3

([
1

2
− j

4

]
,

[
3

4
,

5

4
,

3

2

]
,

Y 4

256

)
+ K4 j Y

3
1 F3

([
3

4
− j

4

]
,

[
5

4
,

3

2
,

7

4

]
,

Y 4

256

)]
. (3.7)

Each term of this power series in τ 1/4 is an exact solution of the linear governing equation. The terms of order
τ j/4 are recognizable as self-similar solutions under a scaling symmetry that depends on j,

µ̄ = e0.5 jεµ; τ̄ = e2ετ ; Ȳ = eεY.

Note that only the first term µ0(Y ), with j = 0, is invariant under the Boltzmann scaling symmetry, which is
the scaling symmetry that also leaves the dependent variable invariant. The other terms in the series, obtained by
separating canonical coordinates of the Boltzmann symmetry, provide a solution that is much more general than
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the similarity solution alone. Such a construction by separation of variables has been used before to solve Stefan
problems with classical second-order heat diffusion equation, general initial conditions and general time-dependent
temperature boundary conditions [17] and to solve a modified Stefan problem with an additional heat supply at the
phase boundary [18].

4 Formal series solution

Given the series (3.7) and (3.6), it remains to deduce the coefficients Ki j and b j from the boundary conditions. The
boundary conditions at x = 0(⇐⇒ Y = τ−1/4�(τ)) may be effected as relations among the coefficients after
a straightforward but tedious substitution. The boundary conditions at Y → ∞ are more difficult to implement
using power series forms for the special functions involved. As in Mullins’ [1] treatment of the small-slope model,
we use the fact that the zero value of the solution at infinity halves the number the free parameters in the Laplace
transform solution, which in turn leads to parameter restrictions on the power series solution at any convenient
value of Y where both types of solution can be evaluated and compared. The boundary conditions at x = 0 cannot
be implemented directly using Laplace transforms because this is a free boundary with Y depending on τ .

4.1 Boundary conditions

(a) Y =
∞∑

i=0

biτ
i
4 , µ =

∞∑
j=0

ε jτ
j
4

(b) Y =
∞∑

i=0

biτ
i
4 , µY Y = 0

(c) τ = 0(⇒ Y → ∞), µ = 1 (4.1)

(d) Y → ∞, µ → 1

(e) Y → ∞, µY → 0

(f) Y =
∞∑

i=0

biτ
i
4 , µY Y Y =

∞∑
l=0

ηlτ
l
4 =

∞∑
i=0

bi
(i + 1)

4
τ i/4

∞∑
j=0

ε jτ
j/4.

The boundary conditions are correct at the leading order in τ if and only if the leading term in the expansion for µ
is the known [5] similarity solution µ0(Y ) with constant groove slope m = (β/ε0)− β. Hence,

µ = µ0(Y )+
∞∑
j=1

τ j/4
[

K1 j 1 F3

([− j

4

]
,

[
1

4
,

1

2
,

3

4

]
,

Y 4

256

)
+ K2 j Y 1 F3

([
1

4
− j

4

]
,

[
1

2
,

3

4
,

5

4

]
,

Y 4

256

)

+K3 j Y
2

1 F3

([
1

2
− j

4

]
,

[
3

4
,

5

4
,

3

2

]
,

Y 4

256

)
+K4 j Y

3
1 F3

([
3

4
− j

4

]
,

[
5

4
,

3

2
,

7

4

]
,

Y 4

256

)]
. (4.2)

For the case of variable m(τ ), we have satisfied the boundary conditions to orders τ j/4 for j = 0 to 3. However,
for the sake of brevity, details of the calculations are given only for j = 1, shown in Appendix A.

In Fig. 2, exact coefficients of the first five terms of the series solution have been used to construct an exact
solution of the governing PDE. Similarity variables are used as coordinates so that the solution can be seen to evolve
away from the similarity solution as the groove slope changes. The solution for θ(x, t) has been integrated from the
calculated depth y(0, t) to obtain y(x, t). The approach of y to 0 as x tends to ∞ is a test of the solution accuracy.
We have found that if the 5-term series is extended to τ = 10, then y/(Bτ)1/4 appears to approach a value near
−0.04 as x increases.
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Temperature-dependent surface diffusion 95

Fig. 2 Plot of surface in terms of dimensionless similarity coordinates at output times τ = 0.0002 (solid), 0.01 (dotted), 1.0 (dashed),
given prescribed slope m(τ ) = 0.5 + 0.5τ 0.25 at groove root x = 0. Exact coefficients have been calculated for the first five terms of
the series

5 Conclusion

For a linear partial differential equation, a Lie symmetry leads algorithmically, through separation of variables, to a
solution that is much more general than the habitual similarity solution obtained by symmetry reduction. This allows
one to formally solve free-boundary problems that have an approximate symmetry at early times. In the application
given above, we have made use of a simple scaling symmetry but in other applications, the method of separation
of variables could be developed from any symmetry (except for linear superposition) of any linear PDE. We have
applied this method here to a complicated practical boundary-value problem for fourth-order surface diffusion near
a grain boundary at changing temperature. Firstly we transform an integrable model to a linear governing equation.
To solve (3.3) we find the values of the constants K1 j , K2 j , K3 j , K4 j in (4.2) as well as µ0(y) and the constants
bi = −4γi/β which give the free boundary. Then we invert the change of variables to get y(x, t).

As discussed in Sect. 2, the integrable fourth-order diffusion equation (2.27) exactly describes surface diffusion
on a material with a particular kind of crystal anisotropy. However, since for a wide range of surface orientations, the
model material is close to isotropic (Fig. 1), Eq. 2.27 also approximates (1.1) for surface diffusion on an isotropic
material. Tritscher [3] used an accurate numerical model to solve (1.1) for the grain-boundary problem and for
evolution of a ramp dislocation when initial slopes were as large as 2. In each case the solution was within 2% of
the solution of the anisotropic integrable model.

A number of significant questions about the rigour of the solution method remain unanswered. However, some
indications of the answers are given by studies on simpler PDEs that have been solved by the same method. The
integrable equation (2.27) is the fourth-order member of an integrable hierarchy of n’th order nonlinear PDE, each
of which can be solved by essentially the same transformations given here [19,11,5].

After an additional change of variable, essentially the same formal series expansion method was applied to a
second-order integrable diffusion-convection equation [18],

θt = ∂x [(β − θ)−2θx ] − [(β − θ)−2 + γ ]θx ,
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96 P. Broadbridge, J. M. Goard

subject to Dirichlet boundary conditions. Explicit recurrence relations were found for the series coefficients; up to
180 terms were calculated in examples. There is no evidence that the partial sums do not approach a limit. However,
convergence of the formal series has not yet been proven.

Unlike in our method, in perturbation-series methods, partial sums do not give exact solutions to the governing
equation. Unlike standard second-order diffusion problems, fourth-order diffusion problems do not in general obey
a maximum principle and they do not have increasing Shannon information [20]. Solutions θ(x, t) to standard
fourth-order diffusion problems are not one-to-one functions of x (e.g. Fig. 2) so that x cannot be a single valued
function of (θ, t) and Philip’s perturbation series approach [21] cannot be applied. Hence there are few, if any, rival
methods for producing analytical solutions to nonlinear boundary-value problems with fourth-order diffusion.

A (Appendix): Evaluation of series coefficients

A.1 Boundary conditions at Y =
∞∑

i=0
biτ

i
4

At this stage it is convenient to define functions

f 0 j (z) = 1 F3

([− j

4

]
,

[
1

4
,

1

2
,

3

4

]
, z

)
, f 1 j (z) = 1 F3

([− j

4
+ 2

]
,

[
9

4
,

5

2
,

11

4

]
, z

)
,

f 2 j (z) = 1 F3

([
1 − j

4

]
,

[
5

4
,

3

2
,

7

4

]
, z

)
, f 3 j (z) = 1 F3

([
5

4
− j

4

]
,

[
3

2
,

7

4
,

9

4

]
, z

)
,

f 4 j (z) = 1 F3

([
9

4
− j

4

]
,

[
5

2
,

11

4
,

13

4

]
, z

)
, f 5 j (z) = 1 F3

([
1

2
− j

4

]
,

[
3

4
,

5

4
,

3

2

]
, z

)
,

f 6 j (z) = 1 F3

([
3

2
− j

4

]
,

[
7

4
,

9

4
,

5

2

]
, z

)
, f 7 j (z) = 1 F3

([
5

2
− j

4

]
,

[
11

4
,

13

4
,

7

2

]
, z

)
,

f 8 j (z) = 1 F3

([
3

4
− j

4

]
,

[
5

4
,

3

2
,

7

4

]
, z

)
, f 9 j (z) = 1 F3

([
7

4
− j

4

]
,

[
9

4
,

5

2
,

11

4

]
, z

)
, (A.1)

f 10 j (z) = 1 F3

([
11

4
− j

4

]
,

[
13

4
,

7

2
,

15

4

]
, z

)
, f 11 j (z) = 1 F3

([− j

4

]
,

[
1

2
,

3

4
,

5

4

]
, z

)
,

f 12 j (z) = 1 F3

([
3 − j

4

]
,

[
13

4
,

7

2
,

15

4

]
, z

)
, f 13 j (z) = 1 F3

([
13

4
− j

4

]
,

[
7

2
,

15

4
,

17

4

]
, z

)
,

f 14 j (z) = 1 F3

([
7

2
− j

4

]
,

[
15

4
,

17

4
,

9

2

]
, z

)
, f 15 j (z) = 1 F3

([
15

4
− j

4

]
,

[
17

4
,

9

2
,

19

4

]
, z

)
.

The boundary conditions can be written in terms of these functions evaluated at z = b̄ = b4
0/256. From boundary

condition (4.1a), on equating powers of τ we obtain expressions for εi , i = 0, 1, 2 . . .. For example, by balancing

terms of degree τ
1
4 , we have

ε1 = K11 f 01
(
b̄
) + K21b0 + K31b2

0 f 51
(
b̄
) + K41b3

0 f 81
(
b̄
) + µ′

0(b0)b1. (A.2)

For boundary condition (4.1b), we first expand µY Y :

µY Y = µ′′
0(Y )+

∞∑
j=1

τ
j
4

[(
− Y 6

5040
j

(
1 − j

4

)
f 1 j

(
Y 4

256

)
− Y 2

8
j f 2 j

(
Y 4

256

))
K1 j

+K2 j

(
Y 3

6

(
1

4
− j

4

)
f 3 j

(
Y 4

256

)
+ Y 7

11340

(
1

4
− j

4

) (
5

4
− j

4

)
f 4 j

(
Y 4

256

))
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+K3 j

(
2 f 5 j

(
Y 4

256

)
+ 7Y 4

90

(
1

2
− j

4

)
f 6 j

(
Y 4

256

)
+ Y 8

56700

(
1

2
− j

4

)
(
3

2
− j

4
) f 7 j

(
Y 4

256

))

+K4 j

(
6y f 8 j

(
Y 4

256

)
+ 3Y 5

70

(
3

4
− j

4

)
f 9 j

(
Y 4

256

)
+ Y 9

207900

(
3

4
− j

4

) (
7

4
− j

4

)
f 10 j

(
Y 4

256

))]
.

Balancing terms of degree 0 and 1 in τ 1/4 for boundary condition (4.1b), we get

0 = µ′′
0(b0)

0 = K11

[
−b6

0

6720
f 11

(
b̄
) − b2

0

8
f 21

(
b̄
)] + K31

[
b8

0

181440
f 71

(
b̄
) + 2 f 51

(
b̄
) + 7b4

0

360
f 61

(
b̄
)]

+K41

[
3b5

0

140
f 91

(
b̄
) + b9

0

277200
f 101

(
b̄
) +6b0 f 81(b̄)

]
+ µ′′′

0 (b0)b1. (A.3)

For boundary condition (4.1f), we need an expression for µY Y Y :

µY Y Y = µ′′′
0 (Y )+

∞∑
j=1

τ
j
4

[
K1 j

(
− Y 9

4989600
j

(
1 − j

4

) (
2 − j

4

)
f 12 j

(
Y 4

256

)

− Y 5

560
j

(
1 − j

4

)
f 1 j

(
Y 4

256

)
− Y

4
f 2 j

(
Y 4

256

))

+K2 j

(
Y 6

945

(
1

4
− j

4

) (
5

4
− j

4

)
f 4 j

(
Y 4

256

)
+ Y 2

2

(
1

4
− j

4

)
f 3 j

(
Y 4

256

)

+ Y 10

16216200

(
1

4
− j

4

)(
5

4
− j

4

)(
9

4
− j

4

)
f 13 j

(
Y 4

256

))

+K3 j

(
Y 3

3

(
1

2
− j

4

)
f 6 j

(
Y 4

256

)
+ Y 7

3780

(
1

2
− j

4

)(
3

2
− j

4

)
f 7 j

(
Y 4

256

)

+ Y 11

113513400

(
1

2
− j

4

) (
3

2
− j

4

) (
5

2
− j

4

)
f 14 j

(
Y 4

256

))

+K4 j

(
6 f 8 j + 17Y 4

70

(
3

4
− j

4

)
f 9 j

(
Y 4

256

)
+ Y 8

11550

(
3

4
− j

4

) (
7

4
− j

4

)
f 10 j

(
Y 4

256

)

+ Y 12

567567000

(
3

4
− j

4

)(
7

4
− j

4

)(
11

4
− j

4

)
f 15 j

(
Y 4

256

)]
. (A.4)

Balancing powers of τ for boundary condition (4.1f), we obtain expressions for ηi i = 0, 1, 2, . . . In particular,
by balancing terms of degree τ 1/4, we obtain

η1 = µ′′′′
0 (b0)b1 + K11

[
− 3b5

0

2240
f 11

(
b̄
) −b0

4
f 21

(
b̄
) − b9

0

3801600
f 121

(
b̄
)]

+K31

[
b3

0

12
f 61

(
b̄
) + b11

0

363242880
f 141

(
b̄
) + b7

0

12096
f 71

(
b̄
)]

+K41

[
17b4

0

140
f 91

(
b̄
) + 6 f 81

(
b̄
) + b8

0

15400
f 101

(
b̄
) + b12

0

302702400
f 151

(
b̄
)]

(A.5)
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By equating terms of the same degree τ j/4( j = 0, 1, 2 . . .) in boundary conditions (4.1a, b,f), we obtain sets of
determining equations, the first three of which are of the form:

ε0 = µ0(b0), 0 = µ′′
0(b0), η0 = µ′′′

0 (b0), (A.6)

ε1 = F1(K11, K21, K31, K41, b0, b1), 0 = G1(K11, K31, K41, b0, b1), η1 = H1(K11, K31, K41, b0, b1), (A.7)

ε2 = F2(K11, K21, K31, K41, K12, K22, K32, K42, b0, b1, b2)

0 = G2(K11, K31, K41, K12, K22, K32, K42, b0, b1, b2)

η2 = H2(K11, K31, K41, K12, K22, K32, K42, b0, b1, b2), (A.8)

where the ηi are in terms of b0, b1, . . . bi .
From (A.6) we can find b0. From (A.7) we can express K21, K41, b1 in terms of K11, K31. From (A.8), we

can find K22, K42, b2 in terms of K11, K31, K12, K32. Continuing in this way, we can derive linear equations that
eliminate K2 j , K4 j and b j for j = 1, 2, 3, . . .

K2 j =
j∑

i=1

[ψ1i K1i + ψ3i K3i + φi ] , K4 j =
j∑

i=1

[v1i K1i + v3i K3i + Mi ] ,

b j =
j∑

i=1

[w1i K1i + w3i K3i + Ei ] . (A.9, 10, 11)

It remains then to determine K1i , K3i , φi ,Mi , Ei .

A.2 Matching power series and Laplace transform solutions with correct boundary conditions at Y → ∞

Applying the Laplace transform with respect to τ , we obtain the general transformed solution to (2.43) with initial
value 1 and boundary value 1 as Z → ∞ as follows:

µ̄ = exp

(
−p

1
4 Z√
2

)[
C3(p) cos

(
p

1
4 Z√
2

)
+ C4(p) sin

(
p

1
4 Z√
2

)]
+ 1

p
. (A.12)

We now match the Laplace transform of power series solution (4.2) with that of the exact Laplace transform
(A.12) at the convenient value Z = 0 ( ⇐⇒ Y = 0) to find expressions for K1 j and K3 j .

A.2.1 Matching solution values:

Taking Laplace transforms with respect to τ , through (4.2), at Y = 0, we have

µ̃ = µ0(0)

p
+

∞∑
j=1

K1 j
�(

j
4 + 1)

p
j
4 +1

. (A.13)

Then from (A.12) at Z = 0:

µ̃ = 1

p
+ C3(p). (A.14)

Equating (A.13) and (A.14) gives

C3(p) =
∞∑
j=1

[
K1 j

�(
j
4 + 1)

p
j
4 +1

]
+

(
µ0(0)− 1

p

)
. (A.15)
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A.2.2 Matching first derivatives:

Noting firstly that ∂µ
∂Z = τ−1/4 ∂µ

∂Y , at Z = 0( ⇐⇒ Y = 0), from (4.2),

∂µ

∂Z
= µ′

0(0)τ
−1/4 +

∞∑
j=1

K2 jτ
j
4 − 1

4 .

Taking Laplace transforms with respect to τ , then at Z = 0,

∂µ̃

∂Z
= µ′

0(0)�
( 3

4

)
p

3
4

+
∞∑
j=1

K2 j

�
(

j
4 + 3

4

)
p

j
4 + 3

4

. (A.16)

From (A.12) at Z = 0,

∂µ̃

∂ z̄
= 1√

2
p

1
4 [C4(p)− C3(p)]. (A.17)

From (A.16) and (A.17), we deduce

C4(p)− C3(p) = √
2

∞∑
j=1

K2 j

�
(

j
4 + 3

4

)
p

j
4 +1

+ √
2
µ′

0(0)�
( 3

4

)
p

. (A.18)

A.2.3 Matching second derivatives:

From (4.2) we have at Z = 0 (⇐⇒ Y = 0),

µZ Z = µ′′
0(0)τ

−1/2 + 2
∞∑
j=1

K3 jτ
( j−2)/4. (A.19)

Taking Laplace transforms with respect to τ gives at Z = 0,

∂2µ̃

∂Z2 = µ′′
0(0)�

( 1
2

)
p

1
2

+ 2
∞∑
j=1

K3 j

�
(

j
4 + 1

2

)
p

j
4 + 1

2

. (A.20)

From (A.12) at Z = 0,

∂2µ̃

∂Z2 = −p
1
2 C4(p). (A.21)

Therefore from (A.20) and (A.21), we have

C4(p) = −µ
′′
0(0)�

( 1
2

)
p

− 2
∞∑
j=1

K3 j

�
(

j
4 + 1

2

)
p

j
4 +1

. (A.22)

A.2.4 Matching third derivatives:

From (4.2) at Z = 0 ( ⇐⇒ Y = 0),

µZ Z Z = µ′′′
0 (0)τ

−3/4 + 6
∞∑
j=1

K4 jτ
j
4 − 3

4 . (A.23)

Taking Laplace transforms with respect to τ , we get at Z = 0,

∂3µ̃

∂Z3 = µ′′′
0 (0)�

( 1
4

)
p

1
4

+ 6
∞∑
j=1

K4 j

�
(

j
4 + 1

4

)
p

j
4 + 1

4

. (A.24)
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From (A.12), at Z = 0 we have

∂3µ̃

∂Z3 = 1√
2

p
3
4 [C3(p)+ C4(p)]. (A.25)

From (A.24) and (A.25), matching the third derivatives at Z = 0 gives

C3(p)+ C4(p) =
√

2µ′′′(0)�
( 1

4

)
p

+ 6
√

2
∞∑
j=1

K4 j

�
(

j
4 + 1

4

)
p

j
4 +1

. (A.26)

In the following, using (A.15), (A.18), (A.22), (A.26), we find K1 j and K3 j . Equations (A.26,A.18) imply

C4(p) = 1

2

⎡
⎣√

2
∞∑
j=1

K2 j

�
(

j
4 + 3

4

)
p

j
4 +1

+ 6
√

2
∞∑
j=1

K4 j

�
(

j
4 + 1

4

)
p

j
4 +1

⎤
⎦ + 1

2

[√
2µ′

0(0)�
( 3

4

)
p

+
√

2µ′′′
0 (0)�

( 1
4

)
p

]
.

(A.27)

Comparing (A.27) with (A.22), we have

−2�

(
j

4
+ 1

2

)
K3 j = K2 j√

2
�

(
j

4
+ 3

4

)
+ 3

√
2�

(
j

4
+ 1

4

)
K4 j (A.28)

and

−µ′′
0(0)�

(
1

2

)
=

√
2

2

[
µ′

0(0)�

(
3

4

)
+ µ′′′

0 (0)�

(
1

4

)]
, (A.29)

so that using (A.9) and (A.10), (A.28) implies

−2�

(
j

4
+ 1

2

)
K3 j = 1√

2
�

(
j

4
+ 3

4

) j∑
i=1

(ψ1i K1i + ψ3i K3i + φi )

+3
√

2�

(
j

4
+ 1

4

) j∑
i=1

(v1i K1i + v3i K3i + Mi ). (A.30)

This equation is of the form

(A11 K11 + A12 K12 + · · · + A1 j K1 j )+ (A31 K31 + A32 K32 + · · · + A3 j K3 j ) = X j , (A.31)

where the A1p, A3p, p = 1 . . . j and X j are constants. Hence for

j = 1 and 2, A11 K11 + A31 K31 = X1, (A.32)

j = 2, A11 K11 + A31 K31 + A12 K12 + A32 K32 = X2. (A.33)

Further, by subtraction, Eqs. A.18, A.26 give

2C3(p) =
√

2µ′′′
0 (0)�

( 1
4

) − √
2µ′

0(0)�
( 3

4

)
p

+ 6
√

2
∞∑
j=1

�
(

j
4 + 1

4

)
p

j
4 +1

K4 j − √
2

∞∑
j=1

�
(

j
4 + 3

4

)
p

j
4 +1

K2 j . (A.34)

Comparing (A.34) with (A.15) gives

µ0(0)− 1 =
√

2

2

[
µ′′′

0 (0)�

(
1

4

)
− µ′

0(0)�

(
3

4

)]
(A.35)

and

K1 j�

(
j

4
+ 1

)
= 3

√
2�

(
j

4
+ 1

4

)
K4 j −

√
2

2
K2 j�

(
1

4
+ 3

4

)
. (A.36)
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The general similarity solution µ0(Y ) contains four arbitrary constants that may be determined from (A.29,
A.36) as well as (A.6). Using (A.9) and (A.10), (A.36) implies

K1 j�

(
j

4
+ 1

)
= 3

√
2�

(
j

4
+ 1

4

) j∑
i=1

(v1i K1i + v3i K3i + Mi )

−
√

2

2
�

(
j

4
+ 3

4

) j∑
i=1

(ψ1i K1i + ψ3i K3i + φi ) . (A.37)

This is again of the form

(T11 K11 + T12 K12 + · · · + T1 j K1 j )+ (T31 K31 + T32 K32 + · · · + T3 j K3 j ) = Z j , (A.38)

where the T1m, T3m,m = 1 . . . j and Z j are constants.
Hence for example when

j = 1, T11 K11 + T31 K31 = Z1, (A.39)

j = 2, T11 K11 + T31 K31 + T12 K12 + T32 K32 = Z2. (A.40)

Using (A.32) and (A.39) (values with j = 1) we can find K11 and K31. Then on inserting these values into (A.33)
and (A.40) we can solve for K12 and K32. Continuing with successive values of j in (A.31) and (A.38) we can find
the values of K1 j and K3 j for all natural numbers j .

In summary, to find the constants:

1. From (A.29, A.35, A.6) we have b0 as well as the constants in the similarity solution µ0(y) found at the leading
order [5].

2. By successively equating powers of τ from boundary conditions (4.1a, b, f) at y = −4

β

∞∑
i=0

γiτ
(i+1)/4 find

K2 j , K4 j , b j , j = 1 = 1, 2, . . . in the forms (A.9–A.10), i.e., find ψ1i , ψ3i , v1i , v3i , w1i , w3i , φi ,Mi , Ei .
3. Construct a system of linear equations (A.31) and (A.38). Starting with j = 1, solve for K11, K31, then using

j = 2 solve for K12, K32 and with each successive j , solve for K1 j , K3 j .
4. Find K2 j , K4 j , b j , j = 1, 2, . . ., using (A.9), (A.10), (A.11).
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